27 research outputs found

    Influence of Phonon Scattering on the Performance of p-i-n Band-to-Band-Tunneling Transistors

    Get PDF
    Power dissipation has become a major obstacle in performance scaling of modern integrated circuits, and has spurred the search for devices operating at lower voltage swing. In this letter, we study p-i-n band-to-band tunneling field effect transistors (TFET) taking semiconducting carbon nanotubes as the channel material. The on-current of these devices is mainly limited by the tunneling barrier properties, and phonon scattering has only a moderate effect. We show, however, that the off-current is limited by phonon absorption assisted tunneling, and thus is strongly temperature-dependent. Subthreshold swings below the 60mV/decade conventional limit can be readily achieved even at room temperature. Interestingly, although subthreshold swing degrades due to the effects of phonon scattering, it remains low under practical biasing conditions.Comment: 14 pages, 3 figure

    Ballisticity of nanotube field-effect transistors: Role of phonon energy and gate bias

    Get PDF
    We investigate the role of electron-phonon scattering and gate bias in degrading the drive current of nanotube field-effect transistors FETs. Optical phonon scattering significantly decreases the drive current only when gate voltage is higher than a well-defined threshold. For comparable electron-phonon coupling, a lower phonon energy leads to a larger degradation of drive current. Thus in semiconductor nanowire FETs, the drive current will be more sensitive than in carbon nanotube FETs because of the smaller phonon energies in semiconductors. Acoustic phonons and other elastic scattering mechanisms are most detrimental to nanotube FETs irrespective of biasing conditions

    Performance comparison between p-i-n tunneling transistors and conventional MOSFETs

    Full text link
    Field-effect transistors based on band-to-band tunneling (BTBT) have gained a lot of recent interest due to their potential for reducing power dissipation in integrated circuits. In this paper we present a detailed performance comparison between conventional n-i-n MOSFET transistors, and BTBT transistors based on the p-i-n geometry (p-i-n TFET), using semiconducting carbon nanotubes as the model channel material. Quantum transport simulations are performed using the nonequilibrium Green's function formalism including realistic phonon scattering. We find that the TFET can indeed produce subthreshold swings below the conventional MOSFET limit of 60mV/decade at room temperature leading to smaller off-currents and standby power dissipation. Phonon assisted tunneling, however, limits the off-state performance benefits that could have been achieved otherwise. Under on-state conditions the drive current and the intrinsic device delay of the TFET are mainly governed by the tunneling barrier properties. On the other hand, the switching energy for the TFET is observed to be fundamentally smaller than that for the MOSFET, reducing the dynamic power dissipation. Aforementioned reasons make the p-i-n geometry well suited for low power applications.Comment: 37 pages, 12 figure

    Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors

    Get PDF
    Electronic transport in a carbon nanotube (CNT) metal-oxide-semiconductor field effect transistor (MOSFET) is simulated using the non-equilibrium Green's functions method with the account of electron-phonon scattering. For MOSFETs, ambipolar conduction is explained via phonon-assisted band-to-band (Landau-Zener) tunneling. In comparison to the ballistic case, we show that the phonon scattering shifts the onset of ambipolar conduction to more positive gate voltage (thereby increasing the off current). It is found that the subthreshold swing in ambipolar conduction can be made as steep as 40mV/decade despite the effect of phonon scattering.Comment: 13 pages, 4 figure

    Influence of phonon scattering on the performance of p-i-np-i-n band-to-band tunneling transistors

    Get PDF
    Power dissipation has become a major obstacle in performance scaling of modern integrated circuits and has spurred the search for devices operating at lower voltage swing. In this letter, we study p-i-n band-to-band tunneling field effect transistors taking semiconducting carbon nanotubes as the channel material. The on current of these devices is mainly limited by the tunneling barrier properties, and phonon-scattering has only a moderate effect.We show, however, that the off current is limited by phonon absorption assisted tunneling, and thus is strongly temperature dependent. Subthreshold swings below the 60 mV/decade conventional limit can be readily achieved even at room temperature. Interestingly, although subthreshold swing degrades due to the effects of phonon scattering, it remains low under practical biasing conditions

    Ballisticity of nanotube FETs: Role of phonon energy and gate bias

    Get PDF
    We investigate the role of electron-phonon scattering and gate bias in degrading the drive current of nanotube MOSFETs. Our central results are: (i) Optical phonon scattering significantly decreases the drive current only when gate voltage is higher than a well-defined threshold. It means that elastic scattering mechanisms are most detrimental to nanotube MOSFETs. (ii) For comparable mean free paths, a lower phonon energy leads to a larger degradation of drive current. Thus for semiconducting nanowire FETs, the drive current will be more sensitive than carbon nanotube FETs because of the smaller phonon energies in semiconductors. (iii) Radial breathing mode phonons cause an appreciable reduction in drive current.Comment: 16 pages, 1 table, 4 figure

    Dependence of Carbon Nanotube Field Effect Transistors Performance on Doping Level of Channel at Different Diameters: On/off current ratio

    Full text link
    Choosing a suitable doping level of channel relevant to channel diameter is considered for determining the carbon nanotube field effect transistors' performance which seem to be the best substitute of current transistor technology. For low diameter values of channel the ratio of on/off current declines by increasing the doping level. But for higher diameter values there is an optimum point of doping level in obtaining the highest on/off current ratio. For further verification, the variations of performance are justified by electron distribution function's changes on energy band diagram of these devices. The results are compared at two different gate fields.Comment: 9 double spaced pages, 4 figures, published in applied physics letters, along with the terms of the American Institute of Physics Transfer of Copyright Agreement at first pag

    Computational study of exciton generation in suspended carbon nanotube transistors

    Full text link
    Optical emission from carbon nanotube transistors (CNTFETs) has recently attracted significant attention due to its potential applications. In this paper, we use a self-consistent numerical solution of the Boltzmann transport equation in the presence of both phonon and exciton scattering to present a detailed study of the operation of a partially suspended CNTFET light emitter, which has been discussed in a recent experiment. We determine the energy distribution of hot carriers in the CNTFET, and, as reported in the experiment, observe localized generation of excitons near the trench-substrate junction and an exponential increase in emission intensity with a linear increase in current versus gate voltage. We further provide detailed insight into device operation, and propose optimization schemes for efficient exciton generation; a deeper trench increases the generation efficiency, and use of high-k substrate oxides could lead to even larger enhancements.Comment: 17 pages, 5 figure

    Dependence of DC characteristics of CNT MOSFETs on bandstructure models

    Get PDF
    http://www.gianlucafiori.org/articles/CNTieeenano.pd
    corecore